Hierarchical Motion Excitation Network for Few-Shot Video Recognition
نویسندگان
چکیده
Most of the existing deep learning algorithms are supervised and rely on a tremendous number manually labeled samples. However, in most domains, due to scarcity samples or excessive cost labeling, it would be impracticable provide numerous training network. In this paper, few-shot video classification network termed Hierarchical Motion Excitation Network (HME-Net) is proposed from perspective accumulated feature-level motion information. An HME module composed (ME) Interval Frame (IFME) designed extract patterns adjacent frames interval frames. The can discover enhance motion-sensitive information original features. accumulative time window expanded four hierarchical manner, which achieves purpose increasing receptive field. After extensive experimentation, HME-Net demonstrated able consistently outperform models. On UCF101 HMDB51 datasets, our method established as new state-of-the-art technique for settings five-way three-shot five-shot recognition.
منابع مشابه
Dynamic Input Structure and Network Assembly for Few-Shot Learning
The ability to learn from a small number of examples has been a difficult problem in machine learning since its inception. While methods have succeeded with large amounts of training data, research has been underway in how to accomplish similar performance with fewer examples, known as one-shot or more generally few-shot learning. This technique has been shown to have promising performance, but...
متن کاملLearning to Compare: Relation Network for Few-Shot Learning
We present a conceptually simple, flexible, and general framework for few-shot learning, where a classifier must learn to recognise new classes given only few examples from each. Our method, called the Relation Network (RN), is trained end-to-end from scratch. During meta-learning, it learns to learn a deep distance metric to compare a small number of images within episodes, each of which is de...
متن کاملHierarchical Overlapped Growing Neural Gas Networks with Applications to Video Shot Detection and Motion Characterization
This paper describes a hierarchical overlapped architecture (HOGNG) based upon the Growing Neural Gas (GNG) network [1]. The proposed architecture combines the unsupervised and supervised learning schemes in GNG. This novel network model was used to perform automatic video shot detection and motion characterization. Experimental results are presented to show the good classification accuracy of ...
متن کاملFew-Shot Image Recognition by Predicting Parameters from Activations
In this paper, we are interested in the few-shot learning problem. In particular, we focus on a challenging scenario where the number of categories is large and the number of examples per novel category is very limited, i.e. 1, 2, or 3. Motivated by the close relationship between the parameters and the activations in a neural network associated with the same category, we propose a novel method ...
متن کاملFew-shot Object Detection
In this paper, we study object detection using a large pool of unlabeled images and only a few labeled images per category, named “few-shot object detection”. The key challenge consists in generating trustworthy training samples as many as possible from the pool. Using few training examples as seeds, our method iterates between model training and high-confidence sample selection. In training, e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronics
سال: 2023
ISSN: ['2079-9292']
DOI: https://doi.org/10.3390/electronics12051090